Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro.

نویسندگان

  • S G Carriedo
  • H Z Yin
  • J H Weiss
چکیده

The nonphosphorylated neurofilament marker SMI-32 stains motor neurons in spinal cord slices and stains a subset of cultured spinal neurons ["large SMI-32(+) neurons"], which have a morphology consistent with motor neurons identified in vitro: large cell body, long axon, and extensive dendritic arborization. They are found preferentially in ventral spinal cord cultures, providing further evidence that large SMI-32(+) neurons are indeed motor neurons, and SMI-32 staining often colocalizes with established motor neuron markers (including acetylcholine, calcitonin gene-related peptide, and peripherin). Additionally, choline acetyltransferase activity (a frequently used index of the motor neuron population) and peripherin(+) neurons share with large SMI-32(+) neurons an unusual vulnerability to AMPA/kainate receptor-mediated injury. Kainate-induced loss of these motor neuron markers is Ca2+-dependent, which supports a critical role of Ca2+ ions in this injury. Raising extracellular Ca2+ exacerbates injury, whereas removal of extracellular Ca2+ is protective. A basis for this vulnerability is provided by the observation that most peripherin(+) neurons, like large SMI-32(+) neurons, are subject to kainate-stimulated Co2+ uptake, a histochemical stain that identifies neurons possessing Ca2+-permeable AMPA/kainate receptor-gated channels. Finally, of possibly greater relevance to the slow motor neuronal degeneration in diseases, both large SMI-32(+) neurons and peripherin(+) neurons are selectively damaged by prolonged (24 hr) low-level exposures to kainate (10 microM) or to the glutamate reuptake blocker L-trans-pyrrolidine-2,4-dicarboxylic acid (100 microM). During these low-level kainate exposures, large SMI-32(+) neurons showed higher intracellular Ca2+ concentrations than most spinal neurons, suggesting that Ca2+ ions are also important in this more slowly evolving injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro.

The reason for the selective vulnerability of motor neurons in amyotrophic lateral sclerosis (ALS) is primarily unknown. A possible factor is the expression by motor neurons of Ca(2+)-permeable AMPA/kainate channels, which may permit rapid Ca(2+) influx in response to synaptic receptor activation. However, other subpopulations of central neurons, most notably forebrain GABAergic interneurons, c...

متن کامل

AMPA receptor desensitization predicts the selective vulnerability of cerebellar Purkinje cells to excitotoxicity.

Cerebellar Purkinje cells are selectively vulnerable to ischemia, although the reasons for this are unknown. In cultured embryonic rat cerebellar neurons, the steady state responses to the desensitizing agonist AMPA relative to responses to the nondesensitizing agonist kainate were greater in Purkinje cells compared to other cells, as measured by whole cell voltage clamp studies. Fluorimetric [...

متن کامل

Ca(2+)-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury.

Neurodegeneration may occur secondary to glutamate-triggered Ca2+ influx through any of three routes: NMDA channels, voltage-sensitive Ca2+ channels (VSCC), and Ca(2+)-permeable AMPA/kainate channels (Ca-A/K). This study aims to examine Ca2+ ion dynamics in the generation of excitotoxic injury by correlating the relative amounts of 45Ca2+ that flow into cortical neurons through each of these ro...

متن کامل

Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death.

The extracellular acidity that accompanies brain hypoxia-ischemia is known to reduce both NMDA and AMPA-kainate receptor-mediated currents and NMDA receptor-mediated neurotoxicity. Although a protective effect of acidic pH on AMPA-kainate receptor-mediated excitotoxicity has been assumed, such has not been demonstrated. Paradoxically, we found that lowering extracellular pH selectively increase...

متن کامل

Enhancement of AMPA-mediated current after traumatic injury in cortical neurons.

Overactivation of ionotropic glutamate receptors has been implicated in the pathophysiology of traumatic brain injury. Using an in vitro cell injury model, we examined the effects of stretch-induced traumatic injury on the AMPA subtype of ionotropic glutamate receptors in cultured neonatal cortical neurons. Recordings made using the whole-cell patch-clamp technique revealed that a subpopulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 13  شماره 

صفحات  -

تاریخ انتشار 1996